


Kubernetes

2

● A container orchestration system

● Automates many aspects of app deployment

– Scheduling to nodes, scaling, handling failures, …

● Declarative objects specify desired state

– Kubernetes autonomously adjusts actual state

● Pods are sets of one or more containers

– Defined by Pod objects

– Containers of a pod run together on a single node



Kubernetes: Volumes

3

● Can manage storage resources through the volume abstraction

– Each volume corresponds to a file system or block device

● User creates a volume by defining a PersistentVolumeClaim (PVC)

– Describes desired properties of the volume (e.g., storage capacity)

● PVC objects also (indirectly) specify a volume provisioner
– Provisioner implements all volume (de)allocation logic

– Interacts with underlying storage system

● Pod containers can access a volume by mounting its PVC

– Provisioner coordinates with storage system to expose volume to 

containers



Kubernetes: Container Storage Interface (CSI)

4

● Kubernetes includes several built-in provisioners

– CephFS provisioner, NFS provisioner, iSCSI provisioner, ...

● Can build provisioners by implementing the Container Storage Interface (CSI)

– gRPC interface specification: https://github.com/container-storage-interface/spec

– Standardizes interaction between container orchestration systems and storage systems

https://github.com/container-storage-interface/spec


A problem: Implementing CSI takes effort

5

● Implementing CSI fully and correctly can be difficult and time-consuming

– Must typically build 2 gRPC servers

– Correct error handling and cleanup is tricky

● Must deploy components across all nodes of the cluster

– CSI controller plugin pod: gRPC server container, "external provisioner" sidecar container

– CSI node plugin pod: gRPC server container, "node driver registrar" sidecar container



Another problem: Kubernetes storage is inflexible

6

● Limited ability to manage storage stacks

● Can only represent volumes and attach them directly to pods

– Can't define intermediate layers to create more complex stacks

● Leads to lack of modularity and reimplementation of features

● E.g., no general mechanism to enable volume encryption

– Each storage system/provisioner must implement their own

– Or each client pod must embed encryption logic

● Problem is exacerbated when combining several storage functionalities

– E.g., applying compression and encryption



A solution: Pods-as-Volumes (PaV)

7

● Kubernetes plugin that simplifies the implementation of new volume provisioners

● Allows specifying logic for creating, deleting, exposing volumes as pod templates

– Pods automatically instantiated from templates when needed

● Easier integration of storage systems into Kubernetes

● Enables straightforward creation of storage middleware components

● Open source: https://github.com/albertofaria/pav

https://github.com/albertofaria/pav


PavProvisioner objects

8

● New object kind: PavProvisioner

● Each PavProvisioner object implements a volume 

provisioner

● Pod templates embedded in object definition

● Can use PavProvisioner in the same manner as 

built-in provisioners



Architecture

● Two main components: agent and CSI plugin

● The agent is deployed once per Kubernetes cluster

– Controller agent, deployed as a single pod for the 

entire cluster

– Node agent, deployed on all nodes

9



Architecture (cont.)

● For each PavProvisioner, a CSI plugin instance is deployed

– CSI controller plugin, deployed as a single pod for the entire cluster

– CSI node plugin, deployed on all nodes

● Kubernetes interacts with CSI plugins

– CSI plugins delegate most work to the agent

10



Use cases: Google Cloud Storage integration

11

● Google's object storage cloud service

● Users create buckets, which contain objects

– Libraries in many languages to access buckets

– Buckets can also be mounted locally as a file system

● No built-in Kubernetes integration

● We create one with PaV

– Each volume is a bucket

– Bucket is mounted into client pods as a file system



● 62 lines of YAML

● No coding 

required

● Relies on existing 

gsutil and gcsfuse 

tools

Use cases: Google Cloud Storage integration (cont.)

12



Use cases: Transparent encryption middleware

13

● No general mechanism for volume encryption in Kubernetes

– Each storage system/provisioner must implement their own

– Or each client pod must embed encryption logic

● We create an encryption middleware with PaV

– Transparent encryption for block volumes

● User creates new PVC referencing underlying PVC

– Client pods mount new PVC



Use cases: Transparent encryption middleware (cont.)

14

● 70 lines of YAML

● No coding required

● Relies on existing 

cryptsetup utility

● Pod templates mount 

the underlying PVC



Summary

● Implementing new provisioners using CSI is difficult and time-consuming

● Kubernetes' ability to manage storage stacks is limited

– Insufficient expressiveness to represent and manage storage layers

● We propose Pods-as-Volumes (PaV)

– Easily implement new volume provisioners

– Specify logic underlying volume lifecycle and behavior as pod templates

● Simplifies integration of storage systems into Kubernetes

● Enables straightforward creation of composable storage middleware components

15



PaV is open source!

16

https://github.com/albertofaria/pav

https://github.com/albertofaria/pav

